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Abstract 

Three models of back-to-back testing process are described. Two models treat the case 
where there is no inte-omgonent failure dependence. The third model describes the 
more realistic case where there is correlation among the failure probabilities of the 
functionally equivalent components. The theory indicates that back-tu-back testing can, 
under right conditions, provide a considerable gain in software reliability. The models 
are used to analyse the data obtained in a fault-tolerant software experiment. It is shown 
that the expected gain is indeed achieved, and exceeded, provided the inter-component 
failure dependence is sufficiently small. HoweverI even with relatively high correlation 
the use of several functionally equivalent components coupled with the back-to-back 
testing may provide a considerable reliability gain. Implications of this finding are that 
the rnultivenion software development is a feasible and cost-effective approach to 
providing highly reliabile software components intended for fault-tolerant software 
systems, on condition that special attention is directed a t  early detection and elimination 
of correlated faults. 

(*) This research was supoorted in part by NASA grants NAG-1-667, and NAG-1-512. 
and contract NAS-1-17705. 



1. Introduction 

Fault-tolerance is or wil l  become part of many critical software and hardware 

systems [e.g., Mar82, Mad84, Tro85, Bis861. There are two common methods for 

achieving software fault-tolerance. These are the N-version programming approach and 

the recovery-block approach [Ran?% Avi841. 
a 

Although existing fault-tolerant software (FTS) techniques can achieve an 

improvement in reliability over non-fault-tolerant software, experiments show that 

failure dependence among FTS system components may not be negligible in the context 

of current software development and testing techniques [Nag% Sco84, Nag84, Vou85, 

Wig84, Kni86, Kel861. Correlated coincidental component failures may be disastrous in 

current FTS approaches and can seriously undermine any reliability gains offered by the 

fault-tolerance mechanisms (e.g. Sco83a, Sco84, Avi84, EckBS, Vou86aI. Hence it is 

important to detect and eliminate them as early as possible in a FTS life-cycle. 

Throughout this paper we  shall use the terms "component(s)", "version(s)", 

"functionally equivalent software components", and "software components" 

interchangeably. The terms "coincident", "correlated" and "dependent" failures (faults) 

have the following meaning. When two or more functionally equivalent software 

components fail on the - same input case we say that a coincident failure has occurred, 

and k failing components give a level-k coincident failure. The fault(s) causing a Level-k 

failure we shall call level-k fault(s). When two or more versions give the same incorrect 

response, to a given tolerance, w e  say that an identical-and-wrong (IAW) answer was 

obtained. If the measured probability of the coincident failures is significantly different 

from what  would be expected by random chance on the basis of the measured failure 

probabilities of the participating components [e.& Eck85, Kni86, Vou851, then we  say 

that the observed coincident failures are correlated or deoendent, Le. if Pr denotes 

probability, then 
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pFf version(i) fails I venion(j) fails 1 # Pr { version(i) fails I. 

If a fault, or a fault combination, results in a IAW answer from k components we say that 

the falut(s) has (have) "spBn" of size k. The fault span is important because with the 

probability of excitation of the fault (fault intensity or visibility) it determines the level 

of the inter-component failure correlation for that fault. 

The back-to-back testing technique discussed here involves pairwise comparison of 

all functionally equivalent components. Whenever a difference is observed among 

responses, the problem is thoroughly investigated and appropriate action is taken. If all 

answers are identical to within a specified tolerance then a "no detected failure" event is 

said to occur. We say that back-to-back testing fails when all the components fail with 

(within tolerance) IA W answers. Our e-veriments indicate that these corrrelated faults 

occur in practice but can be prevented or reduced. 

In section 2 we present three models of the back-to-back testing process. In 

section 3 we use the models to analyse and discuss the e.uperirnenta1 information 

concerning the effectiveness of the back-to-back testing and the multiversion 

development approach. 

2. Faiiute Models 

Our goal is to model the probability that k versions obtain IAW answem and 

compare it with experimental findings. W e  will  present three models, two of which 

assume that the versions fail independently and the third attempts to capture the 

correlation between versions. We assume that m functionally equivalent software 

components of versions were developed by independent programming teams from 

equivalent specifications. We will select a subset of size k from these m versions which 

we will call a k-tuple. 

Back-to-back testing of k zomponents fails to  signal a potential error :vhen ii! 
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the Components agree, to a given tolerance, on a value which is a wrong answer. This 

results in an "undetected" failure. Of course, if k=l i.e. single component, then every test 

case (run time errors resulting in operating system intervention excepted) is a potential 

"undetected" failure in the absence of an oracle or tfgoldenl' program. In the following 

text the term "agreement" means equality. between two responses (answers) within a 

tolerance TOL. I t  is also assumed that a "golden" or oracle answer is available. 

Consider a k-tuple of components. The following two Events are independent of 

the golden program (see examples in Figure 1). 

* If all k components agree on an answer, a "COLLECTIVE AGREEMENT" event 

occups. 

If there is any disagreement among the components (components being compared 

pairwise with each other, C(k,2) comparisons in all), a "COLLECTIVE WARNING" 

event occurs. 

The following event depends on the golden answer: 

* If all k components agree with the "golden" answer a "SUCCESS" event occurs. 

The following three events are called FAILURE events and they also depend on the 

golden answer: 

If one or more of the component answers disagree with the golden answer a 

"ONEPLUS FAILURE" event occurs. This is a pessimistic (conservative) view of the 

failure recognition process, since one or more failures is considered to fail the k- 

tuple. 

The following events are subevents of the ONEPLUS FAILURE event: 

If the majority of the components disagree with the golden answer then we say that a 

"MAJORITY FAILURE" event h a s  occurred. The majority of k components is defined 

as r(k+lV 2 1  . It is possible to define other intermediate states such as the majority 
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of components agreeing with the golden answer, two-or-more disagreeing etc. 

If all the components disagree with the golden answer then we  say that a n  "ALL 

FAILURE" event  takes place. 

- 

Other  rneaSuFe of "distance", such as t h e  difference between the mean value of the  

component answers and the golden answer, may coalesce the ONEPLUS through ALL 

FAILURE events into a single event. 

Combinations of the above "eiementary" events produce the following mutually 

exclusive and collectively exhaustive back-to-back testing events (see Figure 1): 

* If a SUCCESS occurs together with a COLLECTIVE AGREEMENT then a n  "OK?* 

event occurs. 

* If a SUCCESS occurs together with a COLLECTIVE WARNING then a "FALSE 

FLAG" event occurs. The back-to-back testing signals an  error when one is not  

present. We note that la-bl - < TOL and 1b-d 5 TOL does not  imply tha t  la-cl 5 TOL. 

Hence, FALSE FLAG events a r e  not inconsistent. 

If a FAILURE occurs together with a COLLECTIVE WARNING w e  say that a "FLAG" 

event has occurred. The back-to-back testing correctly de t ec t ed  a potential fa i lure  

(fault). 

If FAILURE occurs simultaneously with a COLLECTIVE AGREEMENT then w e  s a y  

that a NO - FLAG event occurs. This is the  mos t  significant back-to-back testing 

event. A potential  failure exists (the failure is fully confirmed if ALL FAILURE has 

occured) but was not detected by back-to-back testing. 

* 

* 

2.1 IAW Models 

Formally, the probability that a given subset of k versions or a k-tuple 

obtains a IAW answer can be  writ ten as a conditional probability as follows. Let X 

denote the  event "k versions obtain identical answers" (COLLECTIVE AGREEMENT). 
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a n  B the event  "k versions fai l  simultaneously" (ALL FAILURE), and A&B their 

intersection (NO-FLAG), then  

P(AdcB) = P(AIB)P(B) (1) 

Let  Pi represent the probability that component i, 1 C - -  i < m, fails on a given 

input, and let 'p be the mean fa i lure  probability per tes t  case per  component'  for the  

set of m components. Then 

where the sum is from i=l  to m, 

I t  is possible to construct C(m,k) sets of k-tuples f rom a pool of rn 

components, where C(m,k) is the number of combinations of m objects taken  k at a 

time. If the failure probabilities are independent then the probability of an ALL 

FAILURE for the j t h  k-tuple is as follows: 

Pj(k) = PIP2 - 0 -  Pk 

We will use P(k) t o  denote t h e  average  of the Pj(k)'S over all C(m,k) subsets: 

where sum is from j=1 to C(m,k). W e  note that i t  can be shown that (sk 2 P(k). We 

also note  that if & denotes the average  failure probability of a single k-tuple, then 

the average of this value over C(m,k) k-tuples is E- In the following text, unless 

stated otherwise, all the quant i t ies  are averaged over C(m,k) k-tuples. 

From the definition of the NO FLAG event  it follows that the probabili ty of 

this event  is less than or equal to the probability of a FAILURE event,  L e t  PI(k) be 

the  probability of an  IAW answer  from all k components of a k-tuple (ALL FAILURE 

event). Then 

PI(k) = F k ) P r ( k  versions fail simultaneousiv) 
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where r ( k )  is the conditional probability of an identical level-k answer (given an 

ALL FAILURE event occurred). This quantit y has , in general, two components. One 

is due to the cardinality of the output space, and the second component is the failure 

(fault) dependence. The probability of IAW answers increases as the cardinality of 

the output spacesdecreases. For low cardinality (finite) output spaces the probability 

of a coincident failure of two or more components resulting in an IAW answer may be 

quite high without any correlation being present. For example, if output space is 

binary, then ail programs which are incorrect wil l  produce the same wrong answer, 

Le. the probability of IAW answers is 1 for failing versions. 

In our first model we approximate the probability of event B in equation (1) 

by the relationship Pr(k versions fail simultaneously) = (PIk . Therefore in Model I 

the probability that back-to-back testing fails to detect an error (NO-FLAG event) is 

where rs(k) represents the component of f(k) associated with the output space 

cardinality effect. Since independence is assumed the failure (fault) correlation is 

zero. The space cardinality component rS(k) is expected to be a decreasing function 

of the size of the error output space, x, and the number, k, of the interacting 

Components (Sun851. Hence, a shape similar to l/x would be expected. In practice 

)(s(k) will also reflect the sampling strategy over the input/output domains, and will  

be a composite function over a l l  the variables involved in determining the 

correctness of an answer. See (Sun851 for a more detailed discussion of this 

phenomenon. 

k 

Equations (1). (3) and (4) yield Model I1 for the failure probability of the 

back-to-back testing approach: 
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When pi's are equal to, say p, for all i, then the  two models become 

equivalent, Le. PI(k) =br,(k) pk . The difference in the es t imates  offered by the two 

models depends on t h e  var iance of g. I t  can b e  shown tha t  Model I will always of fe r  

a more conservative e s t i m a t e  of the back-to-back failure probability than Model 11. 

Since r & k )  < - 1, P(k) and (6)k provide upper bounds or worst-case values for  PI(k) . 

As an  illustration of the detrimental  influence of inteF-component failure 

correlation consider the following. Let P,(k) denote  the average probability of an 

ALL FAILURE event  in a n  environment where inter-component failure (fault)  

correiation is present. Then Model I11 is given by: 

The components of r ( k )  are 

[(k) = rS(k)+ Il,(k)-P(s&c) (9) 

denotes  the influence of the fault correlation, and P(s&c) the  probability 
where r 
of the intersection of the space  and correlation events. 

The conditional probability c(k) is a function of the number of components 

containing the fault(s) resuit ing in an IAW answer (faul t  span), the visibility (or 

excitation probability under  given sampling conditions, [Ram82]) of the fault(s), and 

of the number of such f au l t s  in the set under consideration. 

r 

L e t  C(k)=&This is  o f t en  a reasonable assumption. Also assume t h a t  all the 

failures are caused by t h e  s a m e  fault, or fau l t  combination, and that all failures 

result in IAW answers f rom s components, Le. the fault span is s. Then, given an 

input which results in failure,  and provided k - c s, we can  construct  C(s,k) k-tuples 

where al l  components fa i l  with a n  IAW answer, and C(m,k) k-tuples in all. Therefore  

the probability of randomly choosing a k-tuple exhibiting level-k IXW is 

C(s,k)/C(m,k). If we assume tha t  :he ?robability of failure on input is Ti on :he 
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average, then the probability that back-to-back testing fails to signal a level-k 

failure is 

PI(k) = EC(s,k)/C(m,k)l (10) 

When s<kj C(s,k) is defined to be zero. Note that if failures are completely 

uncorrelated fault span is one (s=l), and then PI(k>1)=0 

3. Experimental Results 

In the summer 1985 a FTS experiment took place sponsored by NASA 

Langley Research Center. The participants were the authom, the Research Triangle 

Institute (NC), the University of Illinois (Urbana-Champagne, Il), and the University 

of Virginia (Charlottesville, Va). h detailed description of the experiment is given in 

[KelSGI. The programmers worked in two-person teams formed by random selection. 

All the programmers worked from the same specification. The programming teams 

were responsible for the software design, the implementation and the testing phases 

of the lifecycle. The experimenters provided acceptance testing of the product. 

The experiment resulted in 20 functionally equivalent programs for solving a 

problem in inertial navigation. The problem specification w a s  new, written for the 

experiment, and was not debugged via a 'pilot" version of the code prior to the 

production of the redundant components. This resulted in a very heavy query traffic 

between the experimenters and the programming teams during the component design 

phase and in the initial stages of the implementation. 

The acceptance testing w a s  a low-expectation process, i.e. only a few 

critical variables were checked, and only 50 random test cases were used. 

Consequently the functional and structural test coverage of the products was low. 

The reliability of the components based on the acceptance testing was about 0.94. 
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The validation testing using much stricter criteria, a range of tolerances for 

comparing r e d  number values test data sets consisting of random and extrema1 and 

special value test cases, and providing fu l l  functional and linear-block coverage, 

detected a number of faults of varying prevalence and seriousness. Some of the 

faults were found to be highly correlated. The reliability of the components w a s  

found to be a strong function of the tolerance used for comparisons. Adjudication of 

the answer correctness was performed using a "golden" or oracle program developed 

at NCSU. Software development and testing w a s  done on VAX 11/750 and 780 

hardware running UNIX 4.2BSDT and MicroVAX I1 hardware running Ultrix 1.2. 

f 

In order to study the influence of component reliability and intercomponent 

failure dependence on the performance of back-to-back testing we have formed 

subsets of components. The subsets had different average component failure 

probability (p'), and different inter-component correlation characteristics. 

Components for the subsets were selected on the basis of their behaviour during 

different stages of the validation testing. The four subsets which are discussed in this 

paper are coded 6(2.1), 4(2.1), g(2.1) and 13C3.1). The first number identifies the 

number of versions (rn) and the second the problem specification update number to 

which the test data and the goiden code used for testing conformed. 

3.2 Experimental Measurements 

The effectiveness of back-to-back testing was investigated using random 

test cases. The emor detecting power, and the structural and functional coverage 

provided by the random sets saturated very rapidly. Measured values (e.g. r ( k ) )  

stabilized by the time about 100 cases were run (not an unexpected result, 

[Vou86a,b]), and hence we used only 200 random test cases. In the back-to-back 

event space this, of course, expands to 200*C(m,k) event samples and gives 

15 

acceptable 95% confidence Sounds on '.he back-to-back testinq parameters. 
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To measure the "reliability gain" (or unreliabilitg reduction factor), G(k), 

offered by back-to-back testing process of k components, as opposed to the 

development of a single component, we shall use the ratio of the probability of an 

"undetectedff failure in an average single component to the probability of an 

"undetected" failure in an average k-tuple after back-to-back testing: 

Experimentally, single component "undetected" failures were recorded by 

running functionally equivalent components against a "golden" or oracle program to 

estimate component failure probabilities. An average value was  then computed for 

the pool of available (operational) components. 

The "undetected" multicomponent failures probabilities were computed from 

pairwise comparisons of responses of all components. The results of the comparisons 

for each test case were recorded in a (k+l )  by k response matrix. The zeroth row of 

the response matrix ( i=O)  contains information on the comparison of the components 

with the golden code. The remaining rows cary information about the mutual 

comparisons of the components. For example, if the comparison of components i and 

j detected a difference for a given test case then the entries (i,j) and U,i) were given 

value 1, otherwise the value w a s  zero. Unless stated otherwise, a comparison 

involved eleven variables, or 52 individual values if array elements are counted 

separately. A difference w a s  signalled if even one of these 52 values differed from 

the golden value. The results shown in this paper were obtained with TOL=0.0001 

absolute for real numbers, and TOL=O for integers. The response matrices were used 

to compute the usual multiple component failure profiles [Vou85,86aI, intensity 

profiles [EcksSI, and counts of the back-to-back events (see section 2). 

Let a hat," , denote experimentally obtained estimates. If ^pi cenotes an 



12 

estimate of the failure probability of component i (relative to the gold program), 

then 5 WIW computed by substitution of the $i values into equation (2). Individual 

Pj(k)'S were similarly computed by substitution in equation (31, and 6(k) was then 

computed using equation (4). The estimate Pc(k) was computed from the count of all 

level-k FAILURE events. The estimate P^i(k) was calculated from the ratio 

A 

A 

A 

[NO-FLAG-count/200*C(m,k)], where the count w a s  over all 200 test cases and over 

all the k-out-of-m possible k-tuples. The parameter was estimated from the ratio 

[NO-FLAGcount/FA.fLURE-count]. The analysis was performed for all three 
Y 

FAILURE event categories defined in section 2, Le. ONEPLUS, MAJORITY and ALL. 

The results are summarized in Table 1. 

To illustrate the relative size of the inter-cornponent correlation among the 

sets, and order them by correlation level, we compute a function L(k) defined by: 

where L(k) may be regarded as the amplification factor of the worst-case 

uncorrelated back-to-back testing failure probability required to achieve the 

observed PI(k) . The value of L(k) is always positive and may be 1 q e r  than 1. Since 

the output space cardinality is the same for all subsets any differences in the L(k)'s 

stem from the inter-component failure dependence and therefore can be  used to 

estimate its relative magnitude. 

A 

3.3 The Gain 

The experimental gain estimates (using ONEPLUS FAILURE events) are 

shown in Figure 2. Note that the ordinate uses logarithmic scale. The notation used 

in the legend of this and other figures h a s  the following meaning. The first two 

letters describe the function that is being plotted. If the first letter is T then the 

curve is the  resuit of theoretical computations, if it is E the data was obtained 



Table 1. 

Experimental Results 

- 
6(2.1) p = 0.379 using ONEPLUS FAILURE events i i 

i Set: 
i ! 2  2.80 0.136 0.615 0.126 0.221 3000 I 

i 3  9.85 0.0385 0.769 0.0351 0.0501 4000 
1 4  51.7 7.33e-3 0.873 7.85e-3 8.40e-3 3000 i 
! 6  i nf 0 1.0 2.01 e-4 0 200 
1 5  455.0 8.3 3e-4 0.947 1.38e-3 8.80e-4 1200 ! 

- 
i Set: 6(2.1) p = 0.379 using MAJORITY FAILURE events 

~~~ ~~~ ~ 

2 12.5 0.0303 0.134 0.126 0.21 1 3000 
, 3  24.1 0.0156 0.306 0.0351 0.0515 4000 
% 4  284.3 1.33e-3 0.156 7.85e-3 8.5 5 e-3 3000 
I 5  inf 0 0.270 1.38e-3 0 1200 , 
1 6  inf 0 0.160 2.02 e-4 0 ZOO i 

- 1 I- 
i Set: 6(2.1) p = 0.379 using ALL FAILURE events 

------ -- ---.- -. 
2 12.5 0.0303 0.114 0.126 0.21 1 3000 
3 137.8 2.7 5e-3 0.0625 0.0351 0.0440 4000 

I 4 1137.1 3.33e-4 0.0313 7.85e-3 0.0106 3000 
' 5  inf 0 0.0192 1.38e-3 0 1200 

6 i nf 0 0.0150 2.02e-4 0 200 

Set: 4(2.1) @ = 0.185 using ONEPLUS FAILURE events 
-. 

2 1.12 0.166 0.302 0.0276 0.550 1200 
3 1.66 0.111 0.376 3.31e-3 0.296 800 

I j 4  3.08 0.060 0.420 3.44e-4 0.143 200 , 
I Set: 4(2.1) 'p = 0.185 using MAJORITY FAILURE events 1 I 

1 

I 2  4.19 0.0442 0.0683 0.0276 0.646 1200 

I 4  18.5 0.010 0.060 3.44e-4 0.167 200 
3 3.61 0.0513 0.153 3.31e-3 0.336 800 

1 Set: 4(2.1) = 0.185 using ALL FAILURE events 

2 4.19 0.0442 0.0683 0.0276 0.646 1200 
3 29.6 6.2 5e-3 0.0262 3.31e-3 0.238 800 1 
4 inf 0 0.01 50 3.44e-4 0 2 00 



Table 1. (continued) 

k & k )  k k )  k k )  P^(k) i ( k )  aanplej 
s i z e  -- 

S e t :  g ( 2 . 1 )  p = 0.366 u s i n g  ONEPLUS FAILURE events 
-- 

2 
3 
4 
5 
6 
7 
8 
9 

S e t :  

-- -- .- -- - ----- ----- --- - -~ -.__ 

2.1 1 0.174 0.562 0.126 0.309 7200 
4.40 0.0832 0.683 0.0406 0.122 16800 
9.74 0.0376 0.767 0.0122 0.0490 25200 
23.4 0.0157 0.830 3.41e-3 0.0189 25200 
60.9 6.01e-3 0.882 8.71e-4 6.82e-3 16800 
175.7 2.08e-3 0.926 2.00e-4 2.25e-3 7200 
658.6 5.56e-4 0.961 4.0 5e-5 5.76e-4 1800 
i nf 0 7.25e-6 0 1.000 

g ( 2 . 1 )  'p = 0.366 u s i n g  ALL FAILURE events 

200 --- ---__ -. -- - -- 

2 6.72 0.054 
3 26.6 0.0137 
4 93.2 3.93e-3 
5 279.5 1.3le-3 
6 768.6 4.76e-4 
7 2635.2 1.39e-4 
8 i nf 0 

inf 0 9 

S e t :  13(3.1) = 0 .443  

2 2.45 0.181 
3 6.53 0.0656 
4 18.8 0.0232 
5 56.0 7.76e-3 
6 187.1 2.32e-3 
7 739.1 5.86e-4 
8 3732.3 1.17e-4 
9 31102 1.40e-5 
10 inf 0 
11 inf 0 
12 inf 0 
13 inf 0 

__ - - - . - .- - 

- 

0.169 
0.0936 
0.0556 
0.0317 
0.0226 
0.0155 
0.0117 
0.0100 

u s i n g  

0.631 
0.731 
0.789 
0.821 
0.839 
0.848 
0.853 
0.854 
0.855 

- 

_L_______ 

0.126 
0.0406 
0.0122 
3.3le-3 
8.7 1 e-4 
2.0 0 e-4 
4.05e-5 
7.25e-6 

0.322 
0.147 
0.0706 
0.0377 
0.0211 
8.93e-3 
0 
0 

---______ - 
7200 
16800 
25200 
25200 
16800 
7200 
1800 j 
200 

ONEPLUS FAILURE events 

0.189 
0.0782 
0.03 11 
0.0119 
4.38e-3 
1.5 5 e-3 
5.27e-4 
1.73e-4 
5.46e-5 
1.67e-5 
4.94e-6 
1.42e-6 

0.286 
0.0697 
0.0294 
9.46e-3 
2.77e-3 
6.94e-4 
1.37e-4 
1.64e-5 
0 
0 
0 
0 

15600 
57200 
143000 
257400 
343200 
343200 
275400 
143000 
57200 
15600 
2600 
200 

Set: 13(3.1) p = 0.443 u s i n g  ALL FAILURE events 

2 4.82 0.0920 0.254 0.189 0.362 15600 
3 22.2 0.0199 0.167 0.0782 0.119 57200 
4 86.3 5.13e-3 0.123 0.031 1 0.0418 143000 

' 5  304.1 1.46e-3 0.0976 0.0119 0.0149 257400 
1 6  1187.8 3.73e-4 0.0810 4.3 8e-3 4.61e-3 343200 
I 7  6081.5 7.28e-5 0.0686 1.55e-3 1.06e-3 343200 

8 57014 7.77e-6 0.0587 5.2 7e-4 1.32e-4 275400 
1.73e-1 0 14300 

11 57200 
9 i nf 0 0.0501 
10  inf 0 'I. 0 4 "3 3.46e-J 
11 inf 0 0.0337 1.67e-5 0 15600 
12 i nf 0 0.0273 4.94e-6 0 2600 

- --- - - - . - . - ---. -- ___ - 

i inf 0 0.0200 1.42e-6 0 
-------.-.-----------.--.---I__ 

__-- - 
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experimentally. The 

L(k), c = r ( k ) .  The 

versions involved in 

14 

second letter has the following meanings: G = G(k) or gain, L = 

number following the first two le t ten  denotes the number of 

the comparisons (m), and is used to identify the component 

subset used. If the data are experimental this number may be followed by another 

letter. Letter A denotes that ALL FAILURE events were used to derive the plotted 

values, letter M that the MAJORITY FAILURE events were used, and if there is no 

letter ONEPLUS events were used. For theoretical curves the number of components 

is followed, in parentheses, by a roman numeral (1, 11 or 111) identifying the 

theoretical model bound used to compute the values. In the case of Model 111 the 

identifier is followed by the span value used in computations. 

I t  is obvious that even in the worst observed case (subset 4(2.1)) the 

multiversion development coupled wi th  back-to-back testing offers some gain in 

reliability over the single component development approach. The size of the fault 

correlation level, as measured by L(k), is illustrated in Figure 3. Experimental r ( k )  

estimates are shown in figure 4. The largest inter-component fault-correlation is 

exhibited by set 4(2.1) and the smallest by set 6(2.1). From Table 1 we see that the 

most unreliable set  is 13 (average failure probability is 0.4431, and the most reliable 

subset is g2.1) with an average failure probability of 0.185. The component sets 6, 13 

and 9 reach infinite gain (no "undetected" failures (faults)) for 6, 10 and 9 developed 

components respectively. Using the conservative ONEPLUS FAILURE events, subset 

4(2.1) never detects aU the potential failures. 

n 

The slopes of the curves in Figure 2, and the gain they imply vary among the 

subsets. The reason for this difference is primarily the intemomponent failure 

correlation. The influence of the average component failure probability of a set 

appean to be  far less important than the correlation effect. For example, the sets 6 

and 9 are approximately equally reliable but the lower correlation set 6(2.1) offers 
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Figure 2.  Cain, C(k),  vs. Number of Developed components (k). The gain estimate of 
the ratio of "undetected" failures in an average single component to "undetected" 
failures remaining after back-to-back testing of the components computed using 
ONEPLUS FAILURE events. 
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Figure 3 .  L(k) vs. Number of componentdk). Illustration of the relative inter- 
component correlation. The difference between the curves indicates the difference in the 
failure (fault) dependence. 
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Figure 4 .  
using ALL FAILURE events. 

(k) vs. Number of Components. Experimental estimate f (k) computed 

better gain figures. Similariy, the most "unreliable" set. 13(2.1)* has a comelation 

level which appears to be smaller than that of set  g(2.1). and its gain curve lies above 

that for the set 9. On the other hand, set 4(2.1) has relatively high reliability, but  its 

components are highly correlated resulting in a gain curve far below any of the other 

sets. 

Figures 5 to 8 show the experimental and theoretical gain curves for each of 

the component subsets separately. Filled (black) symbols refer to the experimental 

data and unfilled symbols to theoretical computations. Theoretical computations 

represent worstease bounds obtained using Model I (triangles), Model I1 (sqwres), 

and Model I11 (diamonds, equation (10) using the maximum fault span observed for 
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conservative gain estimates). In the case of set 4(2.1) this last l imit  would be 

constant and equal to  one, so diamonds in that case represent computat ions for t h e  

span of 3 recorded using the  ALL FAILURE events. 

I t  should be noted t h a t  the theoretical  models, as defined in sec t ion  2, do not 

account f o r  the tolerance e f f e c t  &e. a range of FAILURE events from ONEPLUS t o  

ALL), but  only for  the ALL FAILURE events. Therefore the  theore t ica l  values 

obtained using these models will underestimate the actual  failure probabili ty as 

measured by FAILURE or MAJORITY FAILURE events. Hence, to  va l ida te  the 

models we  use the ALL FAILURE event data. XLSo note  tha t  any resu i t  checking 

during the development/testing of Components effect ively acts as a n  additional 

version (even manual computations may qualify 85 a "version"). Therefore ,  in 

practice the minimal number of "developed" components is usually 2. 

Figure 5 shows the FAILURE (EG61, MAJORITY FAILURE (EGGM), and ALL 

FAILURE (EGGA), es t imates  of the gain for the six component set. Also shown are 

the worst-case gain curves expected using Model I, TG6(I), and Model 11, TGG(II), as 

wel l  as a Model I11 based bound (equation (10) with m=6, s=5, F=0.379), TG6(III/S). It 

is interesting to observe that for the ALL FAILURE events  the maximum fault span 

is one less than it is for the ONEPLUS FAILURE events. The conservat ive 

experimental  gain curve is well  approximated by the Model I1 womt-case bound, 

while t he  MAJORITY and ALL FAILURE est imates  are better then  this bound. 

Figure 6 shows the gain curves for the subset  32.1). Only the ONEPLUS 

FAILURE and the ALL FAILURE experimental  data are given. The component  sets 

6(2.1) and  g(2.1) have very s imilar  average component failure probabilities, bu t  they  

have significantly different  inter-component failure dependence charac te r i s t ics  (see 

Figure 3). The e f f ec t  of the increased inter-component failure correlat ion in subset  

g(2.1) manifests as a reduced slope of the 9 gain curves. The conservative gain 
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Figure 5 .  G(k) vs, Number of Components. Experimental and theoretical gain curves 
for set 6(2 . l ) .  
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Pigure 6 .  G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 9(2.1). 
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Figure 7 .  G(k)  vs. Number of Components. Experimental and theoretical gain cQrves 
for s e t  13(3.1). 
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Figure 8. G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 4(2.1). 
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estimates f a l l  below the Model i predictions based on the average failure probability 

of the whole subset. Figures 7 and 8 illustrate the gain information for subsets 

13(3.1) and 4(2.1) respectively. 

Considering all four sets we note that the Model I worst-case bound provides 

a satisfactory lower l imit  with respect to all ALL FAILURE experimental curves. X 

reasonable conservative limit seems to be provided through the Model I11 bound. Work 

in progress at NCSU shows that good estimates of the correlation behaviour and of 

the bounds can be obtained without the use of a special golden program. For 

example, curve TGS(1x) w a s  computed using Model I with an estimate of 'p based 03 

on the relative performance of the 9 components. Each component w a s  in turn 

treated as the gold program and average failure probability of the other components 

was computed relative to it. A grand average was then computed over all the 

estimates €or us in Model I. 

4. Conclusions 

Using functionally equivalent software components we have experimentally 

investigated the effectiveness of back-to-back testing process. We compared the 

unreliability offered by a multiversion development approach with back-to-back 

testing, with the average unreliability of a single component. Even conservative 

estimates indicate a considerable increase in the probability of detecting failures 

(faults) if back-to-back testing is used. Three models of the back-to-back testing 

process were presented, and it was shown that they offer good estimates of the lower 

bounds on the observed multiversion development reliability gains. 
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